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2. INTRODUCTION

The perinatal brain is comparatively resistant to acute hypoxia-
ischaemia (Fazekas et al 1941). This is related to low energy
metabolism (Thurston & McDougal 1969). Notwithstanding this,
preterm infants run a high risk of perinatal brain damage, the princi-
pal types of which are haemorrhagic and hypoxic-ischaemic (Pape
& Wigglesworth 1979). Such damage accounts for a major part of
subsequent neurodevelopmental deficit (Stewart et al 1983).

Observing proportionality between arterial blood pressure and
cerebral blood flow (CBF) in stressed infants shortly after birth, it
was proposed that asphyxia leading to abolishment of the normal
pressure-flow autoregulation would allow moderate hypotension to
cause ischaemia (Low et al 1977), and moderate hypertension to
be transmitted to the capillary bed and cause rupture and cerebral
haemorrhage (Lou et al 1979a). Indeed, in fetal lamb lesser degree
of hypertension was followed by cerebral haemorrhage if preceded
by asphyxia (Reynolds et al 1979),

Excessive mechanical ventilation, causing severe hypocarbia and
thereby presumably cercbral vasoconstriction, in preterm neonates
may be associated with hypoxic-ischaemic brain damage (Calvert
et al 1987), and neurodevelopmental deficit (Greisen et al 1987b).
Several other risk factors for the development of structural brain
damage have been identified (Trounce et al 1988), but most often it
occurs without a clearly defined precipitating event, and prevention
has largely been unsuccessful, Therefore, a more thorough under-
standing of the physiology, and pathophysiclogy of the perfusion
of the pretermn brain appears necessary.

3. ESTIMATION OF CBF IN NEWBORN INFANTS
Cerebral blood flow is a complex variable varying in time and
distribution. Venous outflow may change within seconds in hyp-
oxia, epileptic seizures, or when blood pressure changes abruptly.
Such events are frequent in the neonatal period. Autoradiogra-
phy in newbomn puppies has shown different rates of blood Aow
to different parts of grey as well as white matter, with the flow
distributions overlapping (Kennedy et al 1972); this is likely to be
the case in newborn infants as well. During hypoxia or asphyxia in
lambs and puppies, CBF may increase in the brainstem, cerebellum
and central ganglia, while remaining constant or even decreasing
in the cerebral hemisphceres (Blomstrand et al 1978, Hernandez et
al 1982). The methods available for estimation of CBE in human
newborns provide only crude measures of those complexities — and
up to now there is no generally accepted method.

3.1. "Xe CLEARANCE

"“Xe clearance has yielded unexpectedly low values of CBF in
preterm infants, therefore the following discussion is focused on
methodological errors, which may result in falsely low flow values.

3.1.1. Theory

'2Xe clearance is commonly used for CBF estimation in adults,
The method is a development of the Kety-Schmidt method and is
based on the Fick principle of indicator exchange in tissue

1) dC/dt = f - (Cy — Cy)

ie. the concentration change of a metabolically inactive indica-
tor, C, equals the flow rate, f multiplied by the difference between
the arterial and venous indicator concentrations, C,and C,. To
circumvent the need for sampling of venous blood, external scin-
tillation detection may be used to measure tissue indicator concen-
tration, The relation of tissue indicator concentration to venous
blood concentration was analysed by Kefy (1951) who made (he
assumption of diffusion across the capillary membrane, into a fully
stirred tissue chamber (‘with the advantage of simplicity if not of
verisimilitude’), The result may be expressed (Tomita & Gotoh
1981) as

2) dC/dt =m - £/A - (A - C, — )

where m = 1-¢~P*/ j5 called the extraction, P - s is the permeability-
surface product of the indicator, and X is the solubility of indicator
in brain tissue relative to that in blood, the so-called brain-blood
partition coefficient. For boundary condition C=0 at time zero,
equation 2 may be solved

T
DG = Xk f Ca(u) « e F -0y
0

where k=m - f/A. Therefore, the rate constant, k calculated from
external scintillation curves includes the partition coefficient and a
measure of diffusion as well as the blood flow rate.

If the tissue is composed of two separate, non-communicating
compartments (e.g. grey and white matter) recorded tissue con-
centrations, C(t) represents the weighted sum of two equations.
Estimates of the two respective rate constants and compartment
weights may be obtained.

3.1.2. Partition coefficient

The solubility of Xenon in blood depends on the haemoglobin
concentration, and is similar for adult and preterm human blood
(Greisen 1986a). The brain-blood partition coefficient depends
mainly on brain lipid content and blood haemoglobin concentration,
Brain liptd content increases significantly during'development, In
newborn puppies the brain-blood partition coefficient in vivo was
about two-thirds of adult values (Hernandez et al 1978). The par-
tition coefficient of human newborn brain tissue was found in vitro
to be independent of gestational age and to be similar for grey and
white matter (Greisen 1986a). For grey matter this is similar to
adult values, for white matter it is only slightly more than half,

3.1.3. Extraction

Diffasion may be expected to constrain the clearance of indicator
from the brain when the capillary permeability-surface product is
low, in particular at high blood flow rates. The capillary density,
and hence capillary surface, may be relatively low during early
stages of brain development and further capillary collapse may
happen in ischaemia (Tomita & Gotoh 1981). Therefore it is not
certain that the underestimation of flow rate by ™Xe clearance will
be negligeable even at the low levels observed in preterm human
brain. A more important error may be counter-current exchange,
which during wash-out will cause Xenon to diffuse from vein to
artery. The result will be a slower clearance, and hence underesti-
mation of flow rate. This error will be greater the lower the flow
rate. Unfortunately, there is only little experimental data on which
to base a quantification of the possible errors, In newbormn lambs,
Xe clearance with external detection yielded ‘fast compartment’
flow rates comparable to the hemispheric flow rates obtained by
the radioactive microsphere technique (Blomstrand et al 1978). In
newborn puppies, values of 25-40 ml/100 g/min have been ob-
tained by the Kety-Schmidt method using *Xe (Hernandez et al
1978, Gregoire et al 1978) as well as by radioactive microspheres
(Goddard-Finegold et al 1984, Ment et al 1985)

3.1.4. Intravenous bolus injection technique

Noninvasive 'Xe clearance after inhalation (Obrist et al 1975) is
well established in adults. When '»Xe in 0.9% saline is injected
intravenously as a bolus, the arterial concentration of ¥¥Xe, C (1)
gradually increases, peaks, gradually decreases, and continues at
a low level throughout the period of analysis. The brain tissue
concentration as a function of time then represents C,(t) convolved
with the clearance function. Cranial '9Xe clearance curves after
intravenous administration in healthy human adults may be ana-
lysed to yield flow rates similar to those obtained by intra-arterial
#Xe injection technique (Thomas ef al 1979).

3.1.4.1. Determination of the arterial input function
In adults external scintillation detection over the chest, allows C,(t)
to be estimated by correcting for the contribution of counts from
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33¥Xe in the chestwall (Jaggi & Obrist 1982). '»*Xe recirculation
is increased, however, in case of alveolar hypoventilation, ven-
tilation/perfusion imbalance, or shunting of blood past the lungs
(right-to-left) through the foramen ovale, all of which is frequent
in newborns. Then the standard comrection for the chest wall con-
tribution underestimates the arterial input during the last part of the
analysis period and hence underestimates cerebral blood flow rates
(Greisen & Pryds 1988). Perivenous uptake of part of the bolus of
Xenon followed by slow release may also result in increased late
133¥e input. A modified correction compares well with estimations
of C,(t) from '*Xe concentrations in exhaled air, and from right ra-
dial artery blood samples (Greisen 1986a, Greisen & Pryds 1988).
These two latter methods account fully for increased late input of
133X but are unsuilable for routine use.

3.14.2. Global CBF in neonates

Intravenous '*Xe clearance yields unreliable separate estimates of
the flow rates to grey and white matter in ill, newborn infants
(Greisen et al 1984a). Even in ‘healthy’ preterm infants the es-
timates of grey matter flow were surprisingly high (Younkin et al
1982). The weighted mean of the flows to the two compartments,
CBF, conceptually similar to the result of non-compartmental
analysis of clearance curves extrapolated to infinity, remains well
defined (Obrist & Wilkinson 1980) and fairly resistant to various
sources of error, even when the clearance period is shortened to 8
min (Greisen 1984). The test-retest variation is 10-15% (Greisen
& Trojaborg 1987). The advantage of shortening the clearance pe-
riod to 8 min is paid for by somewhat lower accuracy compared
with 15 min clearance period, and the results are 15-20% higher
(Greisen & Pryds 1988).

Due to the small size of the brain in preterm infants and the high
proportion of scattered radiation in the detected counts (window 55-
105 KeV, 17mm x 17 mm Nal crystal with a 20 mm long cylindrical
collimation) the ‘sample volume’ of 100-200 ml may be considered
1o represent the entire brain, and CBF to represent global rather
than regional cerebral blood flow. The slightly faster clearance
curves recorded over the temporal and occipital regions compared
lo the parietal and frontal regions in preterm infants (Younkin et
al 1988) may reflect an aspect of brain immaturity, but may also
simply be due to airway artefacts. The time scale of the clearance
means that the CBF value respresents an average over 4-6 min.

Patient radiation dose is higher compared to adults: when 1
mCi/kg (37 MBq) "Xe is injected intravenously, the dose to the
lungs is 1.3 mGy (130 mRem), 0.07 mGy to the gonads, and av-
erage 0.23 mGy to other tissues, depending on fat content, thereby
being higher in term compared to preterm infants (Greisen et al
1984a). This corresponds to the yearly excess background radiation
on the island of Bornholm compared to the area of Copenhagen.

In conclusion, estimates of global CBF from '**Xe clearance after
intravenous bolus injection are unlikely to be grossly erroneous.
The patient radiation allows a few measurcments in each infant
making intra-individual comparisons possible.

3.2, Doppler ultrasound
The Doppler effect on ultrasound in the MegaHertz range is used

to estimate blood flow velocity

V=cos® - Af/2-f- Vi

where V is the estimated blood flow velocity, V, is the velocity of
sound in tissue, Aff2 - f is half of the relative frequency shift, and
© is the angle between the sound beam and the vessel under study.

Determination of cerebral blood flow (in terms of volume Aow
per 100 g brain weight) by Doppler ultrasound faces a number
of difficulties: 1) to obtain a signal from a single straight, non-
dividing artery, 2) to get an equal representation of the low profile
in the recorded frequency spectrum, 3) to remove frequency shifts
due to the slowly moving vessel wall, 4) to determine the weighted
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mean frequency shift, 5) to determine the time averaged mean fre-
quency shift, 6) to determine the angle between the vessel and
the sound beam, and 7) to determine the arterial cross-sectional
area in relation to the mass of brain tissue supplicd by the artery.
Comparison of time-averaged frequency shifts (space-average or
maximum) with measures of volume flow have showed fairly en-
couraging results. [n vitro, using fine rubber tubing, the coefficient
of variation around the regression line (‘accuracy’) is in the order of
+5% (Lundell et al 1984), in human adults +10% (Risberg & Smith
1980), in experimental newborn animals :30% (Batton et al 1983:
Hansen et al 1983, Rosenberg et al 1985); in newbomn infants the
accuracy was £35% (Greisen et al 1984b). This moderate level
of accuracy in perinatal animal and clinical research gives room
for significant systematic errors. Even in the best of situations, in
shortterm studies of trends within individual infants, with constant
transducer position, dynamic changes in arterial diameter may give
tise to errors (Busija et al 1981) and factors affecting arterial di-
amcter such as adrenosympathetic tone (Busija et al 1985), blood
pressure (Kontos et al 1978), P,CO, (Wei et al 1980), and P,O,
(Rosenberg et al 1985) must be considered. In addition to these
*classical’ factors influencing arterial diameter, it has recently been
realized that increased flow velocity in itself, through increased
endothelial shear stress, results in local vasodilation (Anenymous
1988). Thus, in principle, flow velocity in distributary arteries is
actively regulated and may therefore be relatively independent on
volume flow.

A pulsatility index ((systolic flow — diastolic flow)/systolic flow)
has often been used in neonates as proposed by Bada ef al (1979).
This index is expected to reflect cerebrovascular resistance, but
also to vary with cerebrovascular compliance and changes in aortic
blood pressure wave form. It correlates poorly with CBF (Greisen
et al 1984b, Batton et al 1983, Hansen et al 1983, Rosenberg et
al 1985) and the index has not been validated against a standard
calculation of cerebrovascular resistance. Its use will not be further
discussed here.

4. NORMAL VALUES OF CBF IN PRETERM INFANTS
Premature infants are basically in an abnormal situation, and nor-
mality can only be considered apparent. The question is what
values of CBF are compatible with optimal brain function, growth
and development. Unfortunately, methods for the characterisation
of brain optimalily are not available. Only few studies of cerebral
blood flow rates in ‘healthy’, preterm infants have been published
(Table 1). The data suggest that CBF increases with gestational age
and postnatal age. The latter was already hinted at by Garfunkel et
al (1954), who did the very first measurements of CBF in infants
and children with various neurological disorders. In animal species
such as rats and dogs, equally immature at birth as man, neonatal
CBF is low compared to adults (Moore et al 1971, Kennedy et al
1972),

Flow provides substrate for three kinds of processes; growth,
synaptic transmission, and ‘structuramsatz’ (Astrup 1982). Whereas
little is known of the energy metabolism of brain growth which
may not be well studied in acute animal experiments, the low CBF
in such studies is matched by a low metabolic rate (Thurston &
McDougal 1969, Hernandez et al 1978), In the adult brain, more
than half of the metabolic rate is associated with synaptic trans-
mission. The spontaneous electrical activity of premature infants is
characterised by periods of quiescence becoming shorter and fewer
with increasing gestational and postnatal age. It is possible thal the
periodic absence of background activity represents a change of the
organisation of electrical activity rather than an absolute decrease
since no difference in CBF was found in preterm infants between
quiet sleep with discontinuous EEG activity and active sleep with
continuous EEG activity (Greisen et al 1985). Low energy ex-
penditure, however, is also suggested by the paucity of neuronal
synapses of preterm human brain (Huttenlocher et al 1982), as
well as the fragility of behavioral control. Finally, it has been




Table 1. Normal values of ‘global

Author Method N Gesl.age Age CBF (ml/100 g/min) CBF
Greisenetal 1986 ................ *Xe clearance 11 31 0-5d 19.8+5.3

Younkinetal 1982 ................ %Xe clearance 15 31 3-57d 27.748.2

Leahyetal 1980 .. ................ venous occl plethys 24 34 2-24d 32,5 (16-50)
Cookeetal 1979.................. venous occl plethys 13 term 3-24h 31.3 (23-48)
Crossetal 1979 ovssmmasaineringans venous occl plethys 16 40 2-8d 40 (20-59)
Settergrenetal 1976 .............. N0 12 - 1-12m 694.27

Kennedy et al 1957 coninn v s N,0 9 - 3-1ly 106 (96-120)

Lot ¢t ol 98B oo smsmpog i aianes 13 Xe clearance 9 - 7-15y 71£10

Meyeretal 1978.................. 13¥e clearance 15 - 23-62y 4518

note: the data of Younkin et al have been recalculated using the neonatal brain-blood panition coefficient of 0.8 ml/g for grey

and white matter.

suggested that immalture neurones may be less permeable to K*
(Hansen 1977), which would decrease basic energy requirements
for the maintenance of membrane potentials.

It can therefore be concluded that cerebral blood flow rate is low
in healthy preterm infants compared with adult reference values,
and is likely to increase with increasing gestational age and/or
increasing postnatal age.

5. CBF IN MECHANICALLY VENTILATED PRETERM
INFANTS

Mechanical ventilation is used in preterm infants primarily to treat
respiratory distress syndrome (surfactant deficiency), other forms
of respiratory distress, and apnea of prematurity. Although these
are pathophysiologically different in principle, in practice, the dis-
tinction is rarely clear, especially in the first few days of life. The
most important distinction may be some measure of the intensity
of ventilator support, but it should be remembered that the vigour
of treatment may differ greatly among institutions. Mechanical
ventilation was the factor most closely associated with CBF in
42 infants, 26 to 33 weeks of gestation, in the first week of life
(Greisen 1986a). In the mechanically ventilated infants the av-
erage CBFo was 11.8 ml 100 g/min £3.2 SD, reduced by 40%
compared with the spontancously breathing infants. Recently, this
finding was corrobated by others, also using '¥X¢ clearance (Duc
et al 1987). It does not agree with venous occlusion plethysmo-
graphy studies (Milligan 1980), in which the CBF-index exceeded
that reported for healthy term infants (Cross et al 1979). Doppler
ultrasound studies, however, also have suggested that CBF may be
decreased in ventilated infants (Eflison et al 1986). The low CBF
in mechanically ventilated infants was not related to lower P,CO,
(Greisen 1986a, Ellison et al 1986, Duc et al 1987) or to the use
of phenobarbitone (Greisen 1986a).

Respiratory distress syndrome is strongly associated with germi-
nal layer haemorrhage (Allan & Volpe 1986), and in some studies
mechanical ventilation has been associated with neurodevelopmen-
tal deficit (Ruiz et al 1981, Greisen et al 1986). Consequently, the
capacity of mechanically ventilated infants to regulate CBF is of
great interest to evaluate the role of CBF in the development of
structural brain damage. i
6. REGULATION OF CBF IN PRETERM INFANTS
Regulation of CBF is usually classified as metabolic, chemical
(CQ,, O), autoregulatory, or neurogenic (Lassen 1974). Studies of
the physiologic mechanisms of the CBF regulation has not changed
this desciption.

6.1. FLOW-METABOLISM COUPLING

In normal brain, flow is coupled to metabolic rate. In human adults,
the metabolic rate is lower in all areas of the brain during deep
sleep compared to the waking state (Kennedy et al 1982). Rapid
eye movement sleep has been associated with the highest blood
flow rates (Sakai et al 1980). CBF is increased during rapid eye
movement sleep in healthy, term infants compared with deep sleep
(Mitligan 1979, Rahilly 1980a, Muhktar et al 1982). CBF was

lower in deep sleep compared to the waking state in preterm infants,
29 to 34 weeks of gestation, 5 o 17 days after birth (Greisen et
al 1985); this is evidence of the flow-metabolism coupling which
thus may be assumed to be developed in humans at 32 weeks of
gestation if not earlier.

Doppler eslimated flow velocity was normalised after normal-
isation of the hacmatocrit by plasmanate exchange transfusion in
infants with polycytaemia (Rosenkrantz et al 1982). In a group of
‘healthy’, preterm infants haematocrit was related to CBF estimated
by "Xe clearance (Younkin et al 1987). This can be interpreted
as evidence of ‘flow-metabolism’ coupling (a coupling of flow to
substrate delivery in relation to requirements) or as a relation of
CBF to blood viscosity. In newborn lambs, arterial oxygen content
was rednced by sodium nitrite or methaemoglobin leaving haema-
tocrit constant; the CBF increase suggests that flow-metabolism
coupling is the dominating factor (Rosenkrantz et al 1984, Hudak
et al 1986),

Recently, hypoglycaemia a few hours after birth was found to
be associated with a 2.5 fold increase in CBF (Pryds et al 1988a).
Most of the infants were spontaneously breathing, but two hypo-
glycaemic, mechanically ventilated infants presented CBF.., of 29
and 32 ml/100 g/min, demonstrating the ability of cerebral vasodi-
lation in response to decreased substrate availability,

6.2, CBE-O; REACTIVITY

Hyperoxia decreases CBF as estimated by jugular venous occlusion
plethysmography (Leahy et al 1980, Rakhilly 1980b) or Doppler
ultrasound (Nijima et al 1988). Apparently the decrease (15-30%)
exceedes the increase in artrial oxygen content.

6.3. CBF-CO; REACTIVITY

Reactivity of cerebral blood flow to acute changes in CQ, is about
30%/kPa in human adults; blood flow normalises over 24-36 h fol-
lowing a persistent change of F,CO, (Lassen, 1974). The reactivity
depends on the metabolic state of the brain and on the perfusion
pressure; at the lower threshold of pressure-flow autoregulation,
or below, the CO, response is decreased or absent (Higgendal &
Johansson 19635, Harper & Glass 1965).

In healthy term newbomn infants, studies with CQ, inhalation
have shown 18-34%/kPa increases in cranial blood flow estimated
by venous occlusion plethysmography or electrical impedance
plethysmography (Rakhilly 1980b, Costeloe et al 1984). In healthy
preterm infants, a similar study showed CBF-CO, reactivity of
59%/kPa (Leahy et al 1980). Similar CBF-CO, reactivity was
found in clinically stable, mechanically ventilated preterm infants
studied in the second day of life (Greisen & Trojaborg 1987). This
finding indicates a normal vasodilatory reserve in such infants and
in particular suggests that the perfusion pressure was above the
lower threshold of pressure-flow autoregulation; ie that the low
flow condition may be well regulated in respiratory distress, at
least once the immediate postnatal period is over. Recently, the
CBF-CO, reactivity as cstimated by Doppler ultrasound in similar
infants was found to 44%/kPa in the first 24 h of life and 53%/kPa
thereafter (Levene et al 1988).




The association of hypocarbia with brain damage (Calvert et al
1987, Greisen et al 1987b) is surprising. Such damage has not been
reported in adult humans or in animals. In newborn dogs CBF de-
creased by two thirds at P,CO, of 1.8 kPa, but cerebral oxygen
consumption decreased by 20% only, and there was no increase
in base deficit (Reuter & Disney 1986). Cerebral phosphocreati-
nine and ATP were unchanged after 90 min of hyperventilation to
P,CO, of 2.3 kPa (Young & Yagel 1984). Furthermore, in newhorn
lambs hypoxia abolishes CBF-CO, reactivity (Kjellmer et al 1974),
providing an efficient escape mechanism from excessive vasocon-
striction, Therefore significant ischaemia seems unlikely.

6.4, PRESSURE-FLOW AUTOREGULATION

Normal brain maintain constant flow rates over a fairly wide range
of perfusion pressures. The observation of Lou et al (1977,1979a)
of proportionality of CBF and arterial blood pressure in distressed
newborn infants a few hours after birth, suggested that the pressure-
flow autoregulation was abolished. Experimental studies have con-
firmed the presence of pressure-flow autoregulation in the newborn
puppy (Hernandez et al 1980) and the preterm fetal lamb (Papile
et al 1985). Moderate hypoxia (SO, < 50% for 20 min) resulted in
disruption of the pressure-flow autoregulation lasting for 4-7 h in
newbomn lambs (Tweed er al 1986).

Milligan (1980) found proportional rises in arterial blood press-
ure and CBF after transfusion in 5 mechanically ventilated preterm
infants. Several recent studies of mechanically ventilated preterm
infants using Doppler ultrasound have demonstrated increasing
mean flow velocity with increasing blood pressure, either spon-
taneous (Ahman et al 1983), following transfusion (Greisen et al
1988), or following transfusion and/or dopaminergic drugs (Jorch
& Jorch 1987). It is*important, however, to realise that these
changes may be caused by diameter change of the artery studied,
rather than by change of flow rate (Greisen 1986b).

Parallel increases in arterial blood pressure and CBF are not nec-
essarily an expression of impaired autoregulation. If blood pressure
goes above or below the limits of the autoregulatory plateau, CBF
will follow; this is a normal phenomenon, Moreover, if blood
pressure falls with cardiac output, this in itself may affect CBF
by sympatho-adrenergic reflex mechanisms (may be blocked by -
blocking drugs in newborn puppies, Hernandez et al 1982). In such
case CBF-pressure reactivity is increased, but ‘autoregulation’ can
hardly be said to be impaired.

Particular interest has been paid to the significance of persistant
arterial ductus for the cerebral circulation. An open arterial ductus
often complicates respiratory distress in preterm infants, Unfortu-
nately all studies have used Doppler ultrasound and mest report
the pulsatility index. It is obvious that the diastolic flow velocity
decreases with diaslolic blood pressure as the left-to-right shunt
becomes more severe. A direct effect of the increased pulsatil-
ity on cerebroarterial tone — and hence on blood Aow rate — was
suggested by more marked increase in carotid blood flow veloc-
ity than in arterial blood pressure immediately following surgical
closure (Sonesson et al 1986). Preterm infants with severe respi-
ratory distress were found not to increase their cardiac output in
response to haemodynamically significant patent arterial ductus, as
did infants with less severe respiratory distress; arterial blood pres-
sure and cerebral blood flow velocity were decreased in the former
infants (Mellander & Larsson 1988). Apart from the ambiguity
due to the possibility of arterial constriction at the point of mea-
surement when the duct closes, the interrelation between cardiac
output, arterial blood pressure, and the arterial ductus in itself, and
cerebral blood flow is unclear.

Using '®*Xe, no relation of CBF to arterial blood pressure was
found among preterm infants several days or weeks of age (Greisen
1986a, Younkin et al 1987); neither were changes in CBF related
to (small and spontaneous) changes in arterial blood pressure in
mechanically ventilated, preterm infants in the second day of life
(Greisen & Trojaborg 1987),
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Unfortunately, it is difficult to manipulate blood pressure in new-
born infants and no study has as vet demonstrated directly or quan-
tified the pressure-flow autoregulation in newborn infants. Mean-
while, it may be reasonably assumed that pressure-flow autoregula-
tion is present in normocapnic newborn infants unless interrupted
by recent hypoxic or asphyxic insult. The ranges of perfusion
pressures covered and the gestational age when it develops can
only be guessed at.

6.5. NEUROGENIC REGULATION OF CBF

From animal studies it appear that the sympathetic system may play
a more marked role in the perinatal period compared to later life
(Hernandez et al 1982, Hayashi et al 1984, Wagerle et al 1986). No
studies of neurogenic regulation of CBF in newborn infants have
been reported, although the observation of a 30-40% decrease in
CBF as estimated by jugular venous occlusion plethysmography
lasting 60 min after feeding (Dear 1980, Rahilly 1980a) may sug-
gest a neurogenic mechanism.

7. GERMINAL LAYER HAEMORRHAGE AND CBF
Germinal layer haemorrhage (GLH) is typical of preterm infants,
26 to 32 weeks of gestation, occurring in nearly 50% of such
infants. Few haemorrhages are present at birth, about half appear
before 24 h of age, and few after the first week, Often a small
GLH may later enlarge and/or give rise to intraventricular clots,
which may completely fill or even distend the ventricular systern,
In some cases cerebral parenchyma (periventricular white matter)
may become involved.

The neurodevelopmental consequences of GLH not complicated
by ventricular dilation or parenchymal involvement have at present
not been documented; in any casc cercbral palsy is very unlikely,
In contrast, death or major neurodevelopmental deficit follow the
majority of parenchymatous haemorrhages.

7.1. PATHOPHYSIOLOGY

The current evidence is patchy, partly conflicting, and a certain
multiplicity of types of haemorrhages and etiologies is possible, In
view of the clinical importance a brief outline is attemnpted,

Apart from the strong relation to prematurity, GLH is strongly
related to respiratory distress syndrome. Furthermore, hypoxia,
hypercarbia, acidosis, treatment with sodium bicarbonate, mechan-
ical ventilation, pneumothorax, arterial hypotension, intravascular
volume expansion, hypertensive peaks, patent arterial ductus, and
coagulopathy have all been found associated with GLH (Aflan &
Volpe 1986). These factors, however, are all interrelated, and their
individual significances are unclear.

Germinal layer haemorrhage may be produced in the preterm
sheep fetus (Reynolds et al 1979) and in the newbom, term beagle
puppy (Goddard et al 1980a, 1980b, Goddard-Finegold et al 1982).
Asphyxia followed by arterial hypertension, rapidly induced hyper-
carbia (with secondary arterial hypertension), or phenylephrine in-
duced hypertension produce GLH in some cases, whereas asphyxia
followed by venous hypertension or haemorrhagic hypotension fol-
lowed by reinfusion-induced hypertension result in GLH in nearly
100% of experiments.

The primary insult (asphyxia or hypotension) may induce vascu-
lar damage so the secondary increase of transmural pressure may
cause rupture. This interpretalion is supported by finding that in the
beagle puppy model, GLH may be prevented by pretreatment with
superoxide dismutase, without interfering with neither the acute
blood pressure changes, nor with the relative hyperperfusion of the
germinal matrix following reinfusion (Ment e al 1985). Surpris-
ingly, however, CBF was increased during haemorrhagic hypoten-
sion (Goddard-Finegold & Michael 1984), suggesting absence of
an ischaemic/hypoxic primary insult. The microsphere technique
used to demonstrate these sequential changes in CBF did not, how-
ever, allow estimation of flow to the germinal matrix itself, and it is
still possible that this 'low-flow” structure (Pasternak et al 1982) is




selectively vulnerable, being a vascular watershed area (Twkashima
& Tanaka 1978).

In a significant proportion of infants dying with parenchymatous
haemorrhage as a complication to GLH there are only subtle his-
tologic signs of ischaemia, and the ependyma is intact, whereas
the haemorrhage is wedge-shaped corresponding to the drainage
zone of the terminal vein, and perivenous rupture and/or perive-
nous haemorrhages may be demonstrated. It is suggested thal this
represents venous infarction due to terminal vein obstruction by the
primary GLH (Gould et al 1987).

7.2. CLINICAL STUDIES

No method for estimation of flow to the germinal layer in the human
infant is available, and to the extent to which the flow to this area
is particular, the clinical studies are irrelevant for the pathogenesis,

The most direct evidence of a relalion between changes in CBF
and GLH is provided in the study by Milligan (1980). Clinical
signs of major cerebral haemorrhage developed shortly after in-
creases in arterial blood pressure and CBF induced by transfusion,
In a prospective study Ment et al (1981) used **Xe inhalation and
antero-posterior projection on a portable gamma-camera. The CBF-
index was slightly lower in the infants who later were shown to
have GLH by CT-scanning compared to those who did not bleed.
The CBF to the two hemispheres at 24 h of age differed consider-
ably from each other in the infants with GLH, about half of which
would be expected not yet to have bled at the lime of the CBF
study. In a later study (Ment et al 1984) GLH was timed by cra-
nial ultrasonography. Seven of the 19 haemorrhages were major.
The CBF-index at 6 h of age was lowest in the infants who al-
ready had GLH at that time, and was lower in those who bled later
compared to those not blecding at all. These differences in CBF
persisted at 5 d of age. Using positron emission tomography with
a spatial resolution of 1-2 cm, Volpe et al (1983) could demonstrate
wide areas of very low CBF surrounding established parenchyma-
tous haemorrhages. In contrast, Greisen (1986a) found global CBF
higher in infants with GLH, when the effect on CBF of mechanical
ventilation was accounted for. Seven of nine haemorrhages were
present at the lime of study, whereas none of the haemorrhages
were major.

Thus, hyperperfusion may be present in relatively healthy infants
who only develop small hacmorrhages, whereas low CBF may sig-
nal a cerebrovascular abnormality with risk of major haemorrhage.
Low CBF may in tumn be the consequence of large amounts of
extravascular blood. Depression of cortical EEG activity, indi-
cating a global neurophysiologic disturbance, is associated with
major haemorrhage but not with minor haemorrhage (Greisen et al
1987b).

8. ISCHAEMIA OF THE PRETERM BRAIN

The typical structural lesion to the preterm brain (apart from
parenchymatous haemorrhage) is periventricular leucomalacia. It
is located supero-laterally to the lateral ventricles, a watershed area
between cenirifugal and centripetal arterial blood supply during this
period. The severity ranges from mild gliosis to multiple, large
cysts all along the margins of the ventricles. It is often bilateral,
but may be markedly asymmetric.

Periventricular leucomalacia shares many clinical risk factors
with GLH (Trounce et al 1988) and may often be found in the
same infants, but notably the risk does not increase with extreme
prematurity and the lesion may occur at any time during the neona-
tal period, e.g with septic shock.

The acute stages can not be diagnosed with certainty, cysts de-
velop over several weeks, and may be demonstrated by cranial
ultrasound in about 5% of survivors with birthweight less than
1500 g. The majority develop cerebral palsy.

No animal model of periventricular leucomalacia has been devel-
oped., In the newbom puppy, flow to periventricular white matter
decreased markedly during haemorrhagic or endotoxin induced hy-
potension (Young et al 1982), whereas flow to grey matter was

unaffected. During arterial hypoxaemia flow to subcortical white
maltter only doubled whereas glucose utilization increased 4 to 5
fold (Cavazuiti & Duffy 1982), indicating that the Alow increase was
insufficient for the maintenance of aerobic glycolysis, in contrast
to the findings in grey matter structures. These findings point to a
selective vulnerability of periventricular white matter to hypoxic-
ischaemic injury.

8.1. ELECTROPHYSIOLOGICAL SIGNS OF ISCHAEMIA

In acute, localised brain ischaemia the concept of a grey zone of
‘penumbra’ has been proposed (Astrup 1982), a state where the
flow rate is low enough to cause electrical failure but ot to cause
membrane failure and tissue damage. In adult human cortex elec-
trical failure occurs when the flow rate falls below 20 ml/100 g/min
(Trojaborg & Boysen 1973), in adult baboon cortex the threshold
was 12-16 ml/100 g/min, for baboon subcortical grey matter 10-15
ml/100 g/mins (Branston et al 1984).

Flash evoked visual potentials can easily be recorded from
preterm infants shortly after birth and may be acutely, reversibly
affected by hypoxia (Hrbek et al 1978, Pryds et al 1988b). Flash
evoked potentials could be recorded in clinically stable, mechani-
cally ventilated infants with the lowest levels of global CBF (down
to 7 ml/100 g/min, Greisen & Trojaborg 1987). Although in one
third of the infants the recorded potentials showed prolonged la-
tencies compared to similar spontaneously breathing infants (Pryds
et al 1988b), this was not related to the level of CBE. Further-
more, latency did not change when CBF changed as a result of
acute P,CO, change. As the visual pathways pass the periventric-
ular white matter, these findings would suggest that such low flow
is adequate, for function, and therefore for structural integrity, if
not for growth and development.

In mechanically ventilated, preterm infants, who were hypoten-
sive with low cerebral blood flow velocities during the first hours of
life, spontaneous cortical electrical activity was present in all cases
although nearly always reduced, compared to circulatorily stable
infants (Greisen et al 1988). There was only partial improvement
of the electrical dysfunction when circulation was improved by
transfusion. It is not clear if the concept of ischaemic penumbra
is relevant to global ischaemia, to white matter ischaemia, or to
ischaemia lasting several hours or even days (Jones et al 1981)
and it is likely that the electrical dysfunction demonstrated in these
two studies was more related to primary (asphyxial?) insult than
to current ischaemia,

8.2. LOW CBF AND OUTCOME

Lou et al (1979b) demonstrated brain atrophy in six of the ten
infants, who had ‘cortical’ flow rates of less than 20 ml/100 g/min a
few hours alter birth. Menr er al (1983) found neurodevelopmental
deficit associated with high or low CBF-index in the first days of
life. In contrast, normal neurodevelopmental outcome was recently
demonstrated in two preterm infants with mean CBF of 5 ml/100
g/min at 6 and 11 days of age as estimated by O positron emission
tomography (Altman et al 1988).

In conclusion, the threshold of electical failure for global CBF
is likely to be considerably less than 10 ml/100 g/min, and the
threshold of membrane failure still lower, at a level at which the
methods of measurement are too inaccurate for conlusions about
individual infants. The thresholds will be higher if arterial hypox-
aemia, hypoglycaemia, or seizures are present. Such factors may
cxplain the omnious prognostic significance of low CBF shortly
after birth.

9. SUMMARY AND PERSPECTIVES

Studies of cerebral blood flow (CBF) in preterm infants were re-
viewed, CBF is low in healthy infants, 30 to 35 weeks of gestation,
compared with older infants, children, and adults. Normal CBF-
CO, reactivity and normal flow-metabolism coupling have been
demonstrated at this early stage of human brain development, CBF
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is reduced during neonatal illness treated with mechanical ventila-
tion to levels similar to those associated with electrical failure in
adult man and adult animals. The presence of normal CBF-CO,
reaclivity in clinically stable, mechanically ventilated infants, how-
ever, suggests that the low flow state is regulated, and in particular
that the low flow is not a result of low perfusion pressure, Fur-
thermore, the low levels of CBF are not associated with evidence
of electrical failure, nor could electrical failure be demonstrated in
the low flow condition preceding treatment of arterial hypotension
in preterm infants during the first hours of life. Improved meth-
ods for the measurement of blood flow to white matter combined
with the search for more subtle signs of neurophysiological dis-
turbance may allow description of the contribution of ischaemia to
the development of periventricular leucomalacia. The role of dis-
rupted CBF-regulation in the pathogenesis of cerebral haemorrhage
in preterm infants still remains to be elucidated, and may have to
await methods for measurement of blood flow to the germinal ma-
trix itself.

10. SUMMARY IN DANISH

En intravengs 'Xe udvaskningsmetode blev tilpasset nyfgdte
bgrn. Elter datamatsimulation og sammenligning af '“Xe ak-
tiviteten i artericlt blod og udandingsluft med resultaterne af ek-
stern skintillation over thorax kunne det konkluderes at den intra-
vengse metode giver samme verdier for den globale hjernegen-
nemblgdning (CBFs) som ville kunne opnds med den arterielle
metode. CBF. sammenlignedes med Doppler ultralydbestem-
melse af strgmningshastigheden i arteria carotis interna hos nyfgdtc
bgrn; der fandtes rimelig overensstemmelse. CBF, er lay hos
raske, for tidligt fgdte bgrn, ca. 20 ml/100 g/min, sammenlignet
med 45 mi/100 g/min for raske voksne. Hjernegennemblgdningen
faldt under dyb sgvn som tegn pd normal kobling til hjernens stof-
skifte. Hos respiratorbchandlede, for tidligt fgdte bgrn var CBF
endnu lavere, 10-14 ml/100 g/min, Arsagen til dette lave niveau
kunne ikke identificeres. Under respiratorbehandling kunne pavises
spontan EEG aktivitet, flash-udlgste EEG potentialer og normal
CBF-CO, reaktivitet. Den spontane EEG aktivitet @ndredes ikke
sikkert i forbindelse med ggning af CBF ved blodtransfusion i de
fgrste levetimer. De udlgste EEG potentialer ®ndredes heller ikke
i forbindelse med ®ndring af CBF ved zndring af P,CO, i 2. leve-
dggn, Det vil sige at der trods det lave CBF niveau ikke var
funktionelle tegn pd cerebral iskeemi og dermed ingen sandsynlig
direkte betydning for udvikling af hypoksisk-iskemisk hjerneskade.
Derfor kan méiling af hjernens globale gennemblgdning endnu ikke
anbefales til klinisk brug.
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